## Noisy dynamics in nanoelectronic systems

Lukas Worschech
Technische Physik, Universität Würzburg, Germany


## Transport:

F. Hartmann, S. Kremling, S. Göpfert, L. Gammaitoni

Technology:
M. Emmerling, S. Kuhn, T. Steinl, M. Kamp

III-V samples:
C. Schneider, S. Höfling

## SபBTLE <br> SUB KT LOW ENERGY TRANSISTORS AND SENSORS

## NANOPOWER

- Stochastic resonance: Weak signals can be enhanced by
fluctuations (for a review Ref.[1])
- Ingredients:
- Noise
- Sub-threshold signal
- Non-linear system, e.g. bistable systems
- SR as model was introduced to explain the periodic recurrences of ice ages: Benzi, Parisi, Sutera, Vulpiani [2]
- SR has been found in various
systems, e.g. in crayfish mechanoreceptors [3]
[1] L. Gammaitoni et al., "Stochastic resonance", Reviews of Modern Physics, Vol. 70, No. 1, January 1998
[2] Benzi, R., G. Parisi, A. Sutera, and A. Vulpiani, 1982, Tellus 34, 10.
[3] Douglass, J. K., L. Wilkens, E. Pantazelou, and F. Moss, 1993, Nature (London) 365, 337.


## Outline

- Nanoelectronic semiconductor electronic devices
- Technology
- Mesoscopic devices
- Nonlinear transport
- BL Motors
- Y-branch switch as half adder
- Quantum dot as a memory
- Resonant tunneling diode: Sensor, logic stochastic resonance
-Best detection strategy


## Outline

- Nanoelectronic semiconductor electronic devices
- Technology
- Mesoscopic devices
- Nonlinear transport
- BL Motors
- Y-branch switch as half adder
- Quantum dot as a memory
- Resonant tunneling diode: Sensor, logic stochastic resonance
-Best detection strategy

- Electronics: frequencies $\mathrm{Hz}-\mathrm{THz}$
- Optoelectronics: wavelengths 0.2 - $100 \boldsymbol{\mu m}$

$\square$ Combination of different semiconductors with atomic precision
$\square$ Growth techniques: e.g. Molecular beam epitaxy (MBE)

$\square$ Modulation-doped GaAs/AIGaAs heterostruktur (HEMT)
$\square$ Mean free path: ~10 10 ms @ 4,2K / 50 - 200nm @ RT

$\square$ Top-down route: lithography, etching,...
$\square$ Bottom-up route: self-assembly, seeded growth,...
$\square$ Different geometries: wires, dots, rings, splitters...


## Outline

- Nanoelectronic semiconductor electronic devices
- Technology
- Mesoscopic devices
- Nonlinear transport
- BL Motors
- Y-branch switch as half adder
- Quantum dot as a memory
- Resonant tunneling diode: Sensor, logic stochastic resonance
-Best detection strategy


## Characteristic lengths

De Broglie wavelength: $l_{\text {deBroglie }}=h / p$

- Fermi wavelength: $\quad l_{F}=\left.l_{\text {deBroglie }}\right|_{E=E_{F}}$
- Mean free path:

$$
l_{m}=v \tau=\frac{p}{m} \tau=\frac{\hbar k}{e} \frac{e \tau}{m}=\frac{\hbar k}{e} \mu
$$

Phase coherence length: $l_{\phi}=h / \sqrt{2 m k T}$
a) Diffusive
b) Coherent
c) Ballistic

- Conductance quantization in 1D wires
$I_{2 T}=I_{L \rightarrow R}+I_{R \rightarrow L}=$

- Multi-terminal conductor: Landauer-Büttiker formula

$$
I_{i}=\frac{2 e}{h}\left[\mu_{i}-\sum_{j} T_{i j} \mu_{j}\right]
$$



UNIVERSITÄT What is nano? A comparison: metals vs semiconductor


Metal: Gold film

$$
\begin{aligned}
& \mathrm{n}=2.3 \times 10^{15} / \mathrm{cm}^{2} \\
& I_{F}=0.52 \mathrm{~nm}, \mathrm{E}_{\mathrm{F}}=5.5 \mathrm{eV} \\
& I_{m} \sim 1-10 \mathrm{~nm} \\
& I_{\phi} \sim 1-100 \mu \mathrm{~m}
\end{aligned}
$$

Semiconductor:
2 dimensional electron gas (2DEG)

$$
\begin{aligned}
& \mathrm{n}=3.0 \times 10^{11} / \mathrm{cm}^{2} \\
& I_{F}=46 \mathrm{~nm}, \mathrm{E}_{\mathrm{F}}=11 \mathrm{meV} \\
& I_{m} \sim 1-100 \mu \mathrm{~m} \quad \mathrm{~T}<4 \mathrm{~K} \\
& I_{\phi} \sim 1-100 \mu \mathrm{~m}
\end{aligned}
$$

## Quantum wire

- Electron wave propagation: each occupied subband contributes with $2 \mathrm{e}^{2} / \mathrm{h}$ to the conductance $\rightarrow$ conductance quantization




## Quantum ring

- Quantum oscillations: Aharonov-Bohm effect
- Magnetic field symmetry in linear mesocopic transport $G(B)=G(-B)$



$$
\begin{gathered}
\Delta \phi \sim \int \vec{A}(\vec{r}) d \vec{r} \\
r=\sqrt{\frac{h \mathrm{f}}{e \pi}}=59(0) \mathrm{nm}
\end{gathered}
$$

## Conductor with 3 contacts

- Current conservation

$$
S^{+}=S^{-1}
$$

- symmetry

$$
s_{i j}=s_{j i} \quad T_{i j}=\left|s_{i j}\right|^{2}
$$

- Transmission matrix

$$
T=\left(\begin{array}{ccc}
r^{2} & G & 1-G-r^{2} \\
G & {\left[\frac{1-G-r}{1-r}\right]^{2}} & G\left[\frac{1-G-r^{2}}{(1-r)^{2}}\right] \\
1-G-r^{2} & G\left[\frac{1-G-r^{2}}{(1-r)^{2}}\right] & {\left[\frac{G+r^{2}-r}{1-r}\right]}
\end{array}\right)
$$

- Switching parameter

$$
G=\frac{1-\gamma\left(V_{g}, V\right)}{2}
$$

- I-V curve

$$
\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\frac{2 e^{2}}{h}(I-T)\left(\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)
$$

- Stem and 2 branches controlled by side gates

- Mesoscopic capacitance: Self-switching in a YBS


$$
\begin{aligned}
& \Delta \Phi_{b}=\frac{C_{g}}{C_{g}+D_{b}+2 C_{l r}} \Delta \mu_{g}+ \\
& \frac{D_{b}}{C_{g}+D_{b}+2 C_{l r}} \Delta \mu_{b}
\end{aligned}
$$

## YBS




- Push-pull Mode:
$\mathrm{V}_{\mathrm{gl}}+\mathrm{V}_{\mathrm{gr}}=$ const $\left(\mathrm{d} \mathrm{V}_{\mathrm{gl}}=-\mathrm{d} \mathrm{V}_{\mathrm{gr}}\right)$



## Outline

- Nanoelectronic semiconductor electronic devices
- Technology
- Mesoscopic devices
- Nonlinear transport
- BL Motors
- Y-branch switch as half adder
- Quantum dot as a memory
- Resonant tunneling diode: Sensor, logic stochastic resonance
-Best detection strategy


## Solar cell



- Optical excitation of electron hole pair
- Separation by a p-n junction: asymmetry in the device structure
- Is it possible to generate a current in a symmetric structure?


## Diffusion constants:

$D=\mu k T_{H}, \quad$ qin $H$
$D=\mu k T_{L}, \quad q \operatorname{in} L$


For systems subject to thermal noise, the Boltzmann factor is

$$
\exp \left(\frac{-V}{k T}\right)
$$

M. Büttiker, Z. Phys. B 68, 161 (1987).
R. Landauer, J. Stat. Phys. 53, 233 (1988).

- Double well potential with minima located at $A$ and $D$.
- $D$ is the energetic favorable point $D$ with $D<A$.
- Consider two temperatures at the slopes $T_{\text {hot }}$ and $T_{\text {cold }}$ with $\mathrm{T}_{\text {hot }}>\mathrm{T}_{\text {cold. }}$

For systems with mobility $\mu$ subject to drift and state dependent diffusion the Boltzmann factor is

$$
\exp (-\Psi(\mathrm{q}))
$$

with $\Psi(q)=-\int_{0}^{q} d p \frac{v(p)}{D(p)}$

$$
\begin{aligned}
& V(q)=V(q+2 \pi) \\
& V(q)=V_{0}(1-\cos (q)) \\
& D(q)=D(q+2 \pi) \\
& D^{-1}(q)=D_{0}^{-1}(1-\alpha \cos (q-\phi)) \\
& D_{0}=\mu k T \\
& \Psi(q)=-\int_{0}^{q} d p \frac{v(p)}{D(p)} \\
& \Psi(q)=\Psi(q+2 \pi)+2 \pi \Delta \\
& \text { M. Büttiker, Z. Phys. B 68, } 161 \text { (1987). } \\
& \text { Ya. M. Blanter and M. Büttiker, Phys. Rev. Lett. 81, } \\
& \text { 4040-4044 (1998). } \\
& \text { With: } \Delta=\frac{\mu V_{0}}{D_{0}} \frac{\alpha}{2} \sin (\phi)
\end{aligned}
$$

$$
I_{o v}=\frac{\pi^{2} E_{0}^{2} T_{1}}{\gamma L^{2} T_{0}^{2}} \exp \left(-\frac{E_{0}}{T_{0}}\right) \sin (\varphi) \quad I=\frac{\gamma T_{1}}{2 m T_{0}} \exp \left(-\frac{E_{0}}{T_{0}}\right) \sin (\varphi)
$$

## Outline

- Nanoelectronic semiconductor electronic devices
- Technology
- Mesoscopic devices
- Nonlinear transport
- BL Motors
- Y-branch switch as half adder
- Quantum dot as a memory
- Resonant tunneling diode: Sensor, logic stochastic resonance
-Best detection strategy


## Rectification due to junctions:

- pn-junction

- Metal-semiconductor junction

Y-branch junction: no geometrical asymmetry!




Half-Adder: binary addition with carry bit

| Truth table |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathbf{X}$ | $\mathbf{Y}$ | Z | C |
| H | H | L | H |
| H | L | H | L |
| L | H | H | L |
| L | L | L | L |



- planar Half-Adder is based on ballistic Y -junctions
- Inputs: x and y
- Outputs: c and z
- Working point: s
- Control: v

L. Worschech et al., Appl. Phys. Lett. 83, 2462 (2003)

```
control of }\mp@subsup{\textrm{V}}{\textrm{z}}{}\mathrm{ via }\mp@subsup{\textrm{V}}{\textrm{c}}{}\mathrm{ :
a) Injection of electrons
b) Gating
No external gate!
Self induced switching
```




## Outline

- Nanoelectronic semiconductor electronic devices
- Technology
- Mesoscopic devices
- Nonlinear transport
- BL Motors
- Y-branch switch as half adder
- Quantum dot as a memory
- Resonant tunneling diode: Sensor, logic stochastic resonance
-Best detection strategy


## Positioned QDs





- Coulomb oscillations due to charging of island with single electrons
- Coulomb-Diamond used to extract capacitances, charging energy > 10 meV



## Outline

- Nanoelectronic semiconductor electronic devices
- Technology
- Mesoscopic devices
- Nonlinear transport
- BL Motors
- Y-branch switch as half adder
- Quantum dot as a memory
- Resonant tunneling diode: Sensor, logic stochastic resonance
-Best detection strategy

- fast operation $\sim \mathrm{THz}$
- negative differential resistance
- ballistic operation at room temperature



- Ultra-miniaturized circuits: Small signal-to-noise ratios (SNR) \& feedback between different devices are unavoidable
- Subtle strategy: exploit ambient noise and feedback action for electronic applications



No thermal transconductance limit $\boldsymbol{\rightarrow}$ ultra small switching voltages

## Logic RTD gates



$$
V_{1}=V_{2}=0 \mathrm{mV}==\text { Log. input } \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=0+0=0
$$




$V_{1}=0,2 V_{2}=2,0 \mathrm{mV}==$ Log. input $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=1+0=0+1=1$


## Logic RTD gates


$\mathrm{V}_{1}=\mathrm{V}_{2}=2 \mathrm{mV}==$ Log. input $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=1+1=2$

| 140 -130 |  |
| :---: | :---: |
| E 120 | $\square \quad$ - Threshold |
| $\wedge^{110}$ | - $\quad \mathrm{V}$ |
| V 100 | $\triangle \quad \nabla: \circ{ }^{\circ} \mathrm{l}=1+0=1$ |
|  |  |
|  | , |
|  | 2324252627282930 |
|  | $\mathrm{Vac}^{\text {(mV) }}$ |



## Logic RTD gates


$\square$ transition from NOR to NAND opertation for amplitude changes smaller than 1 mV

## Logic stochastic resonance



Murali, K. , Sinha, S. , Ditto, W. , Bulsara, A. Phys. Rev. Lett. 102, 104101 (2009).

Murali, K., Rajamohamed, I. , Sinha, S. , Ditto, W. , and Bulsara, A. , Appl. Phys. Lett. 95, 194102 (2009).
L. W., F. Hartmann,T. Y. Kim,S. Höfling,M. Kamp,A. Forchel,J. Ahopelto,2I. Neri,A. Dari, L. Gammaitoni, APL 2010
(a) experiment

(b) theornoise (nw)

(a)


L. Gammaitoni et al., "Stochastic resonance", Reviews of Modern Physics, Vol. 70, No. 1, January 1998

Overdamped motion of a Brownian particle in a bistable potential in the presence of noise and periodic forcing

$$
\dot{x}=-V^{`}(x)+A_{0} \cos (\omega t+\varphi)+\xi(t)
$$

with

$$
V(x)=-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}
$$

Noise-induced hopping between the local equilibrium states with the Kramers rate

$$
r_{K}=\frac{1}{\pi \sqrt{2}} \exp \left(-\frac{\Delta V}{D}\right)
$$

The time-scale matching condition for stochastic resonance:

$$
T_{\omega}=2 T_{K}
$$



- RTD is bistable with stable outputs $\mathrm{I}_{\mathrm{H}}=800 \mu \mathrm{~A}$ and $\mathrm{I}_{\mathrm{L}}=270 \mu \mathrm{~A}$.
- Works @ RT
- PVR~3
- Noise induced switching between the two stable states appear.
- Time scale $T_{k}$ is given by the inverse of the Kramer's rate.

- At the optimum noise level $\mathrm{P}_{\mathrm{SR}}$, the spectral amplitude reaches a maximum value and is decreasing apart from $P_{S R}$.


$$
P_{\text {noise }}=2 n W
$$

$$
P_{\text {noise }}=32 \mathrm{nW}
$$

$$
P_{\text {noise }}=112 \mathrm{nW}
$$

At $\mathrm{P}_{\text {noise }}=32 \mathrm{nW}$ the output follows almost perfectly the input signal !!

- The input and the working point voltages set the condition of the Y-branch switch.
- Self-gating leads to a bistable transfer characteristic.
- Noise induced oscillations occur
- All measurements @ 20K.



Input signal:

$$
V_{g}(t)=V_{g, 0}+\delta V_{g} \bullet \sin (\omega t)
$$

Weak periodic signal:

$$
\delta V_{g}=1.3 m V
$$



- The detector in biased in the strongly noise activated regime.
- Switching between $V_{H}$ and $V_{L}$ solely controlled by the internal noise.
- Magnetic field is applied perpendicular to the motion of electrons.
- Measure the time spent in each of the two stable states:

$$
T_{H, L}=\frac{1}{n_{H, L}} \sum_{i=1}^{n_{H, L}} T_{H_{i}, L_{i}}
$$

- Output of the detector is the residence time difference: $\Delta T=T_{H}-T_{L}$ time difference in electron waveguides



## Increasing magnetic field:

-The output $\mathrm{V}_{\mathrm{br}}$ decreases linearly down to a magnetic field threshold $\mathrm{B}_{\mathrm{th}}$.

- Transitions between the two stable states occur within a magnetic field range $\Delta \mathrm{B}$.
-The output $\mathrm{V}_{\mathrm{br}}$ changed its stable state from $V_{b r}=V_{H}$ to $V_{b r}=V_{L}$.
- The magnetic-field induced switching (between $\mathrm{V}_{\mathrm{H}}$ and $\mathrm{V}_{\mathrm{L}}$ ) is associated with an interplay between a scattering asymmetry at the boundaries. [1]

[1] D. Hartmann et al., PHYSICAL REVIEW B 78, 113306 (2008).


## UNIVERSITÄT Magnetic field sensors based on the residence WÜRZBURG time difference in electron waveguides




- The residence time $T_{H}$ (high state) is decreasing and $T_{L}$ (low state) is increasing with increasing $B$.

$$
\Delta T(B)=T_{0}-c B
$$

- Output $\Delta T$ is a linear function of the magnetic field around the symmetric point $\Delta \mathrm{T}=\mathbf{0} \mathrm{s}$.
- Target signal (magnetic field) independent

$$
S(B)=\frac{\partial \Delta T}{\partial B}=c
$$ sensitivity.

